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Abstract

For hydrological modelling studies at the river basin scale, decision makers need guid-
ance in assessing the implications of uncertain data used by modellers as an input to
modelling tools. Simulated solute transport through the unsaturated zone is associ-
ated with uncertainty due to spatial variability of soil hydraulic properties and derived5

hydraulic model parameters. In general for modelling studies at the river basin scale
spatially available data at various scales must be aggregated to an appropriate scale.
Estimating soil properties at unsampled points by means of geostatistical techniques
require reliable information on the spatial structure of soil data. In this paper this infor-
mation is assessed by reviewing current developments in the field of soil physical data10

uncertainty and adopting a classification system. Then spatial variability and structure
is inspected by reviewing experimental work on determining spatial length scales for
soil physical (and soil chemical) data. Available literature on spatial length scales for
soil physical- and chemical properties is reviewed and their use in facilitating change of
spatial support discussed. Uncertainty associated to the derivation of hydraulic prop-15

erties from soil physical properties in this context is also discussed.

1 Introduction

The scope of this paper is on the issue of providing guidance on classification and
quantification of uncertainty associated with soil physical- and chemical data in the un-
saturated zone at the river basin scale. The underlying idea for the present paper is20

inspired by the need for providing guidance for the assessment of uncertain soil data
targeted towards practitioners within hydrological modelling. For performing environ-
mental hydrological modelling studies for assessing implications of politically imposed
measures for the reduction of environmental pollution there is a need for decision-
makers to evaluate the results of modelling studies against the background of uncer-25

tain data input needed for a comprehensive assessment of the effect of measures and
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associated costs. Questions posed by decision-makers regarding how confident they
can be about simulated measures having implications for cost-effectiveness are most
relevant. This has called for research relevant policy-making and integrating social and
physical perspectives on environmental problems, that traverse a range of political and
geographic scales (Brown and Heuvelink, 2005). Outcomes of environmental mod-5

elling studies are never certain due to uncertainty in model parameterization, bound-
ary conditions of the model and also due to uncertainty in the model itself. The latter
uncertainty arises from the fact that the hydrological model always is a more or less
crude simplification of the reality in nature. Represented soil processes in the model
do only capture real processes approximately. In this paper a model is defined as a nu-10

merical code that is imposed on an interpretation of the environmental system, which
processes it mimics. The representation of the environmental system itself is also often
called a model in literature, but in the context of the present paper the model that is
representing the environmental system is denoted a conceptual model. For instance,
parameterization of a groundwater model requires a correctly interpreted geological15

model. In this case the groundwater model is the numerical model, e.g. MODFLOW,
and the interpreted geological model is the conceptual model (Refsgaard et al., 2006).
Focus here is thus on making transparent to user groups the uncertainty related to
spatial soil physical data at the river basin scale required for the parameterization of a
model for environmental hydrological studies.20

2 Soil physical and chemical properties in the vadose zone

The soil system represented by soil physical properties is a very complex system and
result from physical, chemical and biological processes over time. The soil has been
recognized as a key compartment in biochemical cycles (carbon, nitrogen, water, etc.)
and underlying physico-chemical processes are still only partly understood and subject25

of research (Gratwohl et al., 2004). The variation of the soil system is in fact so com-
plex that no description of it can be complete and so prediction is inevitably uncertain
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(Heuvelink and Webster, 2001). Soil properties can vary over time as a result of im-
pact by climate and land management. However, in this paper only spatial variation is
considered over the time scale relevant for environmental assessments within e.g. the
EU Water Framework Directive (WFD), i.e. a few decades. One of the major causes for
uncertainty and erroneous understanding of causal relationships and the magnitude5

of parameters and trends has been identified as the scale problem. Different levels of
heterogeneity are encountered when passing from the microscopic to the macroscopic
scale. Processes identified and regarded valid at one scale may not hold at another
spatial scale. At the field scale, the modelling of nitrate leaching may focus on the
influence of natural variation in the soil, but at the larger farm scale the variation in10

land-use will be much more important (Heuvelink and Pebesma, 1999). This scaling
issue remains one of the largest problems in soil science and hydrology and various
techniques have been developed to scale soil physical properties (refer to Pachepsky
et al. (2003) for a comprehensive review). In soil physics, the description of water flow
in soils is based on gradients in soil water potential, which in soils is predominantly15

determined by capillary and gravitational forces. This concept has been applied and
thoroughly tested at the scale of a soil column. Predictions of water flow at larger scales
are therefore an extrapolation based on the assumption that the hydraulic properties of
the soil, determined at the local scale, may represent the properties at a larger scale.

In this paper soil physical data is closely linked to soil hydraulic properties, like re-20

tention data and hydraulic conductivity. Soil hydraulic properties can be derived from
basic soil physical properties like texture from general purpose soil maps using pedo-
transfer functions (PTFs; Bouma, 1989; Børgesen and Schaap, 2005; Rawls et al.,
1991; Wösten, 1997; Pachepsky et al., 1996, 2006) and are needed for parameteriza-
tion of hydrological models used to describe water- and solute transport through the25

vadose zone. Soil hydraulic properties may also be measured directly from samples
in the laboratory and the soil hydraulic conductivity may be determined in-situ in the
field (e.g. Mohanty et al., 1994; Severino et al., 2003), but this procedure is often cum-
bersome and expensive and therefore not feasible in practice at the scale of the river
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basin. The water flow direction in the vadose zone is often assumed to be vertical
only. Vogel and Rath (2002) provide a review of flow and transport in the unsaturated
domain at various spatial and temporal scales and also covering modelling aspects.
The groundwater zone is the saturated domain and water- and solute transport may
be represented in 3-D. Therefore, model simulated flow is dependent on knowledge of5

the geological structure to ensure a realistic conceptual model of the system at hand.
Uncertainty related to parameterization of groundwater models is dealt with elsewhere
(Nilsson et al., 20061).

Environmental risk assessment in which an evaluation of the uncertainty associated
with pollutant fate modelling for decision making within a hydrological context are cur-10

rently receiving a vast amount of interest (see e.g. Dubus and Brown (2003) for a review
on uncertainty associated with pesticide fate modelling, and e.g. Worrall et al. (2002)
and Søvik et al. (2003) for a review on uncertainty in a more general geochemical con-
text. Quinn (2004) argues that the modeller must use the appropriate type of model
at the appropriate scale for modelling of nitrate leaching in order to best understand15

nitrate losses at that scale and appreciate associated uncertainty. One of the primary
contributors to the uncertainty in contaminant concentration predictions is uncertainty
in the hydraulic parameters of soils at a site (e.g. Meyer et al., 1999), but geochemical
properties, like CEC and pH, also play an important role (Grathwohl et al., 2003, 2004).
Sensitivity analyses with the Danish DAISY model (Hansen et al., 1991) showed that20

nitrate variations in soil texture substantially affects nitrate leaching (Watertech, 2005).
The amount of organic matter in the soil affects both hydraulic properties and miner-
alization. Organic pollutants (e.g. pesticides) are characterised by compound specific
properties such as sorption and degradation and heavily dependent on both the soil
physical and the soil chemical environment. Refer to Wauchope et al. (2002) for a25

review on pesticide soil sorption parameters, Delle Site (2000) for a review on factors
affecting sorption of organic compounds in water systems for selected pollutants, and

1Nilsson, B., Højbjerg, A. L., Refsgaard, J. C., and Troldborg, L.: Uncertainty in geological
and hydrogeological data, Hydrol. Earth Syst. Sci. Discuss., in review, 2006.
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Beulke et al. (2000) for a review on simulation of pesticides on the basis of laboratory
data. Geochemical and biological processes are predominant factors of the fate and
transport of contaminants in soils and the unsaturated zone. Often these processes
are studied separately. Detailed modelling approaches have been developed to couple
the description of water flow and geochemical interactions as well as microbiological5

processes. They are functionally strongly related, where small-scale heterogeneity
serves as an important factor to provide a niche for surviving organisms (Grathwohl
et al., 2004). Leaching of contaminants through the soil is controlled by many envi-
ronmental parameters and their effect on contaminant release is to a very large ex-
tend compound specific. E.g., leaching of heavy metals is heavily dependent on pH,10

presence of dissolved organic carbon and changes in redox potential (van der Sloot
et al., 2004). Heavy metals and other toxic elements are thus subject to a complex
speciation in the unsaturated zone. The conceptual approach of interface interaction
between solid compounds (including complex minerals and natural organic matter) is
well developed, but the validation of the different concepts and the quantification of re-15

lated parameters is still uncertain and subject to scientific discussion (Grathwohl et al.,
2004). Volatile compounds (VOCs) leach to groundwater unless biodegraded by micro-
organisms which in turn depend on other geochemical conditions for their existence.
Other compounds such as various complex organic mixtures are also biodegradable,
but may be very persistent over many decades to centuries. The same applies to some20

types of pesticides. Further environmental and compound specific parameters that in-
fluence on biodegradation include biodegrability, bio-availability and concentration of
the contaminant, soil temperature, oxygen content, water content and nutrients con-
tent. Thus within the context of the Water Framework Directive and ecological status,
the uncertainties associated to geochemical environmental characterisation important25

to potential leaching of contaminant is large and highly pollutant specific. Numerical
modelling of organic pollutant leaching to groundwater is only possible if i) a detailed
characterisation of the soil hydraulic and geohydrologic conditions are known, i.e. water
content profile, water table elevation and hydraulic conductivity; ii) a good estimate of
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location, quantity and composition of contaminant is available and iii) good estimates
of biodegradation rates for each contaminant are availabe. Søvik and Aagaard (2003)
found that most geochemical parameters are distributed normally or lognormally. Typ-
ical values and parameter bound cannot be provided due to their site-specific nature.
More specific parameters that relate to geochemical conditions substantially add to5

the overall uncertainty. Overall guidelines with respect to uncertainty in contaminant
transport are supplied in the GRACOS report (Grathwohl et al., 2003).

The uncertainty associated with the sorption parameter Kd can be placed into three
major categories (Meyer et al., 2004): i) Experimental uncertainty (errors due to mea-
surements), ii) Sorption process chemistry uncertainty (variation in solution chemistry,10

i.e. complexation, competitive adsorption and alteration of the adsorption-site chem-
istry; variation in surface adsorption sites, i.e. mineralogy and surface coatings/fracture
fillings), and iii) uncertainty resulting from changing the spatial support from laboratory
to field. Wauchope et al. (2002) derived information on the uncertainty in sorption in the
form of ‘rules of thumb’. The authors considered that i) the batch experiment probably15

varies from the true average Kd in the field of the same soil by a factor of two; ii) the
variability in Kd in the field is to be attributed to variation of the organic matter content
in the field and of the organic matter itself and typically has a CV of approximately 50%;
(3) a Kd determined for different soils will vary by approximately one order of magni-
tude; (4) a CV of 30–60% is common in multi-soil studies and reflects the variability in20

the sorption capacity of the organic matter and in the measurement of the organic car-
bon content; and (5) Sorption (Koc) values reported for different studies with multiple
soils are expected to vary by an order of magnitude. The application of a similar ap-
proach for other key model input parameters would be useful. A number of sensitivity
analyses have demonstrated that predictions of pesticide fate models for leaching will25

mainly be influenced by sorption and degradation parameters (Boesten, 1991; Soutter
and Musy, 1998; Dubus et al., 2003) and hydrological parameters (Dubus and Brown,
2002; Wolt et al., 2002).
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3 Spatial- and temporal variability

Uncertainty in soil physical and geochemical data at the river basin scale will arise
from the spatial and temporal variability of environmental variables, from sampling pro-
cedures in the field, and from analysis in the laboratory. Soil variability is the product
of soil-forming factors operating and interacting over a range of spatial and temporal5

scales. Heuvelink and Webster (2001) provide a thorough review of spatial and tem-
poral variability and used techniques to analyse them. Soil properties vary in time, but
usually so slowly that it can be ignored at time scales common for hydrological studies.
Agricultural management practices can significantly affect the structure of the soil and
thereby structure dependent soil hydraulic properties such as preferential flow in space10

and time (e.g. Green et al., 2003). Frost and thaw cycles may also alter soil struc-
ture and thereby the soil physical properties (Hinman and Bisal, 1968; Moore, 1981).
Recognition of the importance of spatial variability on land-use has led to the study of
soil heterogeneity. In agriculture, information about the spatial structure of soil chemi-
cal and physical properties is needed to evaluate potential crop yield. In environmental15

science, knowledge of soil variability is needed for practical applications such as hy-
drologic modelling work. For example, selection of a suitable remediation method with
regard to a contaminated site, as well as its implementation, requires knowledge of the
heterogeneity of the properties affecting transport and degradation of pollutants. Previ-
ous work on soil heterogeneity related to environmental issues have often focused on20

the saturated hydraulic conductivity as this property is assumed to be one of the most
important transport related properties (Søvik et al., 2003). Mulla and McBratney (2000)
compiled values for the coefficient of variation for selected soil properties using data
from Jury (1986), Jury et al. (1987), Beven et al. (1993) and Wollenhaupt et al. (1997)
classified according to typical CV ranges (Wilding, 1985). A summary of their findings25

is shown in Table 1.
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4 Characterisation of uncertainty in environmental data

A general framework for assessing and representing uncertainties in environmental
data is provided by Brown (2004). In this framework, a coding of attribute uncertainty
categories is proposed in which a measurement scale can be:

– continuous numerical, e.g. monthly precipitation data5

– discrete numerical, e.g. number of rain gauges in a catchment

– categorical, e.g. soil type

All of these measurement scales may or may not vary in space and/or time.
A distinction is made how uncertainty can be described, i.e. whether this can be done

by means of i) probability distributions or upper and lower bound, ii) some qualitative10

indication of uncertainty, or iii) some indication of how a variable may vary. Further, the
“methodological quality” of an uncertain variable can be assessed by expert judgement,
e.g. whether or not instruments used are reliable and to what degree, or whether or not
experiment for measuring an uncertain variable where properly conducted. Finally,
the “longevity” of uncertain information can be evaluated, i.e. to what extend does the15

information on the uncertainty of a variable change over time.
In the following, selected variables from Table 1 are classified according to their un-

certainty category, type of empirical uncertainty, methodological quality and longevity
as well as data support, i.e. typical sample size (Table 2). In Table 3 the classification
of uncertainty is provided for various derived hydraulic properties as well as the data20

support. In Tables 2, 3 and 4 the uncertainty category for all variables and parameters
except one are judged to be C1, i.e. continous numerical and varying in space, not in
time. The methodological quality for all parameters is classified as “I3”, “S3” and “O4”
as instruments used are well suited for field experiments, sample design adequate and
approved standard in well established discipline. Longevity is judged to be “L2” as the25

associated uncertainty does not change within the WFD timeframe. However, close to
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the soil surface properties may change significantly due to agricultural practice. This
is not accounted for here as properties are considered to be of inherent character. At
depths deeper than the A- and perhaps B-horizon geochemical properties are more
stable over time.

5 Spatial support for soil physical properties5

Handling spatial heterogeneity, the existence of preferred time and space scales for
soil processes, and approaches to finding linkages between scales of state variables,
parameters and conceptualizations have been topics for research for quite a while and
a review of recent ideas in this field is well beyond the scope of this paper. Blöschl
and Sivapalan (1995) provide a thorough review of scale issues in hydrological mod-10

eling and Pachepsky et al. (2003) on scaling methods in soil physics. Modelling of
soil processes at the scale of the river basin involves the use of measured soil data at
different scales and upscale information to the scale of the applied model. Heuvelink
and Pebesma (1999) distinguish between aggregation and disaggregation versus up-
scaling and downscaling, where the latter is related to modeling. In this context it15

is convenient to refer to the ‘support’ being defined as the integration volume or ag-
gregation level and often in literature a synonym to “scale”. The notion of support is
important to characterize and relate different scales in soil physics. Any research of
soil physical properties is made with specific support and spatial spacing, the latter
being distance between sampling locations. If properties are to be used with differ-20

ent support, e.g. when model inputs require a different support than the support of
the observations, scaling becomes necessary (Heuvelink and Pebesma, 1999; Zhu
and Mohanty, 2003). Soil samples taken in the field for determination of soil physical
properties are typically in the order of magnitude of 100 cm3. For clayey soils larger
samples would be more appropriate in order to capture preferential pathways (e.g. Kay25

and Angers, 2003). Simulation models are support dependent (e.g. Heuvelink and
Pebesma, 1999) and field data sampled for model input is often at a support much
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smaller than the support of interest for model output. Therefore it is needed to aggre-
gate to move from point support to, say, field support. First aggregating point support
to field support and then running a hydrological model, or by first running the model
using point support data and then aggregating the model results may do this. Usu-
ally, the models used are non-linear and the two alternatives for aggregation will not5

yield the same result (e.g. Addiscot, 1993; Heuvelink, 1998). Deriving parameters for
closed-form soil water retention expressions like the Gardner-Russo (Gardner, 1958;
Russo, 1988), the Brooks and Corey (Brooks and Corey, 1964), Campbell (Campell,
1974) or van Genuchten model (van Genuchten, 1980) may be done by means of PTFs
based on i) a spatial classification of soil texture by general purpose soil maps or by ii)10

spatial interpolation of soil data. Advantages and disadvantages of both methods are
discussed in Heuvelink and Webster (2001). Variability within soil mapping units is also
described in Mulla and McBratney (2000) where they identify two types of variation of
soil physical properties: i) soil variability within soil mapping units, and ii) variability
caused by mapping and classification error. For most of the soil mapping in the US the15

scale allows up to 40% of the region within a soil mapping unit to consist of dissimilar
inclusions.

A large number of articles have reported on the spatial variability of pesticide
residues or leaching in the field as mentioned in the review paper by Dubus et
al. (2003). Also a number of leaching-risk studies have attempted to account for soil20

variability within map units to predict leaching of nitrate (Gorres and Gold, 1996; Richter
et al., 1998; Webb and Lilburne, 2005). The above-mentioned works have been at-
tributed to some extent to the variability in space of soil physical and geochemical
properties, which in turn influence predictions of both nitrate and pesticide leaching
models. Causes of spatial variability are traditionally classified into intrinsic or extrin-25

sic factors. Taking the agricultural soil system as an example, intrinsic variability is
the variability caused by natural conditions in soil whereas extrinsic variability is that
imposed on a field as part of land management practices. Examples of soil character-
istics that exhibit intrinsic variations are texture and mineralogy while tillage, fertilizer
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and pesticide applications, harvesting and removal of crop residues all contribute to
the development of an extrinsic variability.

6 Geostatistics for representing spatial variation

Often, soil properties do not occur across the landscape in a random fashion. Soil phys-
ical properties taken at close spacings will be similar or spatially correlated whereas5

samples from distant samples may be dissimilar and spatially uncorrelated. The spatial
correlation structure of soil physical- and chemical properties can be used to estimate
properties at unsampled locations by means of geostatistics (Journel and Huijbregts,
1978; Hamlett et al., 1986; Isaaks and Srivastava, 1989; Cressie, 1991). An introduc-
tion to geostatistics applied to soil science is provided by e.g. Heuvelink and Webster10

(2001) and a textbook by Nielsen and Wendroth (2003). Only the very essential theory
needed for understanding the principle of autocorrelation is repeated below. Input for
distributed hydrological modeling at the river basin scale typically requires that available
sampled data at point support is aggregated to block support data that is compatible
with the model grid scale. For soil physical properties this usually involves modeling15

the spatial correlation structure using the semi-variogram γ(h) (Burgess and Webster,
1980) followed by spatial interpolation (kriging).

γ(h) =
1

2n(h)

(n)h∑
i=1

[zi − zi+h]2 (1)

where h is the separation distance between the measured soil properties zi and zi+h
at locations xi and xi+h. The number of pairs separated at distance h is denoted20

n(h). In Eq. (1) it is implicitly assumed that γ(h) is only dependent on h and not on
the positions xi and xi+h. At very small separation distances, observations should
become very similar and the semivariogram, i.e. the variance of (zi , zi+h) theoretically
approaches zero. In practice there will often be an intercept (the nugget) that accounts

1292

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/1281/2006/hessd-3-1281-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/1281/2006/hessd-3-1281-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 1281–1313, 2006

Soil physical
uncertainty

P. van der Keur and
B. V. Iversen

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

for the uncorrelated component of the variance as well as random measurement errors.
At larger distances h, the semivariance typically flattens out and becomes constant,
i.e. observations become uncorrelated. The distance h where this occurs is called
the range. The semivariogram can also be expressed by the autocorrelation function,
which is related to the semivariogram by:5

γ(h) = s2 [1 − ρ(h)] (2)

Where s2 is the process variance and ρ(h) is the autocorrelation function. The semi-
variogram can be modelled by fitting experimental sampling data to a model. The most
common models in this respect are the linear, spherical and exponential. If experimen-
tal data is not available then one must rely on values for typical autocorrelation lengths10

from the literature in order to do spatial interpolation (kriging). Describing uncertainty
using geostatistics is not an activity exempt from uncertainty itself as variogram uncer-
tainty may be large (Jansen, 1998) and spatial interpolation may be undertaken using
different techniques.

7 Experimental autocorrelation length scales for soil physical properties15

In this section an overview of experimentally determined autocorrelation length scales
is provided and summarized in Tables 5, 6 and 7. Russo and Bresler (1981) reported
length scales for several hydraulic properties: 21 m for saturated hydraulic conductivity
(Ksat), 55 m for saturated water content, 25 m for residual water content and 35 m for
sorptivity. Later Vauclin et al. (1983) found correlation length values around 25 m for20

water content at pF 2.5. Cook et al. (1989) found a range of 120 m for the recharge rate
of groundwater in Australia as related to saturated conductivity. A joint research project
in Denmark (Jensen and Refsgaard, 1989) investigated and described the nature of the
spatial variability of some soil physical properties on the basis of detailed experimental
studies on two different localities, a clayey and sandy site, and at different depths by25

means of geostatistical methods. They found no textural spatial dependence for the
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clayey site nor for porosity, dry bulk density and Ksat, whereas the available water con-
tent showed spatial dependence for all depths. At the sandy site, no spatial depence
was found for silt, humus, dry bulk density, porosity and soil water characteristics at
10 kPa. For clay, correlation lengths of 20 m have been reported and for fine sand and
coarse sand approximately 45 m. Mohanty et al. (1994) conducted a spatial analysis of5

measured hydraulic conductivity using disc infiltrometers and found no spatial depen-
dence for Ksat and the van Genuchten retention parameter. Kristensen et al. (1995)
studied two fields in Denmark representing sandy loam and a sandy clay loam within
the context of site specific farming. They derived correlation lengths for a number of
soil physical and chemical parameters. Romano and Santini (1997) analysed within10

the Basilicata area in Southern Italy semivariogram models for curve fitted (RETC; van
Genuchten et al., 1991) and estimated retention characteristics using a PTF approach
(Gupta and Larson, 1979; Rawls et al., 1982; Rawls and Brakensiek, 1989; Vereecken,
1989). They arrived at spherical semi-variogram models and ranges between 800 and
1300 m for both fitted and PTF estimated water retention data. Neuman and Wierenga15

(2003) used omnidirectional sample variograms and fitted spherical models for percent
sand, silt and clay at depths 0–30 cm. Similar variograms for underlying 30–180 cm
can be found in Wang (2002). Some appeared to fit a linear or Gaussian model, but
most fitted spherical models with ranges of 20–25 m. They also conducted a variogram
analysis of the hydraulic parameters Ksat and saturated water content (θs) obtained by20

neural network software package ROSETTA (Schaap et al., 2001). Most of them fit-
ted spherical models with ranges between 20 and 36 m. Recently Sobieraj et al. (2004)
studied scale dependency in spatial patterns of saturated conductivity in a tropical rain-
forest catena and a list of previous studies on the spatial structure of Ksat and correla-
tion lengths varying from 1–25 m. Leij et al. (2004) found that topographic attributes can25

be used to improve the prediction of soil hydraulic properties using PTFs and neural
network techniques.Within the context of spatial structure of soil physical structure and
agriculture Delcourt et al. (1996) studied the spatial structure of soil nutrients from two
fields in the main agricultural area in Belgium and reported geostatistical parameters
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for some topsoil nutrients. Later McBratney and Pringle (1999) conducted a literature
review on variograms for soil- and soil chemical properties for use in precision agricul-
ture. In their study they presented an overview of variograms for pH, clay- and sand
content, carbon-, NO3-N-, phosphorus- and potassium content in the soil. Mulla and
McBratney (2003) compiled various sources of experimental work on semivariogram5

models for several measured soil and agronomic properties from Jury (1986), Warrick
et al. (1986), Wollenhaupt et al. (1997) and McBratney and Pringle (1997). These
results and others are summarized in Tables 5–7. Geostatistical analyses have also
been performed to study the spatial variability of pesticide sorption (e.g. Jacques et
al., 1999) and degradation (e.g. Walker et al., 2001) in the field. Also soil nitrate has10

been geostatistical analysed with respect to the content in the topsoil (e.g. Huang et
al., 2004), in the soil profile (e.g. Shahandeh et al., 2004), or in the whole vadose zone
(e.g. Onsoy et al., 2004).

8 Uncertainty related to derivation of soil hydraulic properties for hydrological
model input15

Water retention and hydraulic conductivity are crucial input parameters in any mod-
elling study on water flow and solute transport in soils. Uncertainty involved in deriving
soil hydraulic properties from pedotransfer techniques is discussed in this section. In
Table 6 examples of parameters are listed which are of large importance for hydro-
logic studies with focus on parameterization of modelling tools for describing water-20

and contaminant flow through the unsaturated zone towards the groundwater zone. All
hydraulic properties and thus derived model parameters relate to soil composition and
are highly uncertain at the river basin scale as soil texture data is usually extracted
from regional databases and is based on measurements from soil profiles that may be
located a quite long apart. Derivation of soil hydraulic properties for input to modelling25

tools either by i) soil class PTFs, e.g. Carsel and Parrish (1988) and Wösten (1995),
ii) linear/non-linear regression equations (regression PTFs), e.g. Rawls and Braken-
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siek (1985) or Minasny et al. (1999) iii) curve fitting, e.g. RETC (van Genuchten et
al., 1991) or finally iv) through the neural network approach, e.g. ROSETTA (Schaap
et al., 2001) are all associated with substantial uncertainty. PTFs transfer experimen-
tally collected data, usually texture properties (but also variables like organic matter
or pH), to parameters required by numerical models. In most cases such parameters5

are related to hydraulic properties, but PTF may also predict soil chemical characteris-
tics, e.g. CEC, soil phosphorus and adsorption-desorption parameters (Wösten et al.,
2001) as well as mechanical and biological properties (McBratney et al., 2002). As op-
posed to the categorical (USDA soil classes) soil physical parameter estimation, PTFs
usually are continous functions for providing such estimates. Wösten et al. (2001)10

reviews PTFs based on the European HYPRES (Wösten et al., 1999) and the interna-
tional UNSODA (Leij et al., 1996; Nemes et al., 2001) databases. PTFs may require
a fixed dataset, e.g. textural properties or be hierarchical depending on the available
data input (Schaap et al., 1998, 2001). McBratney et al. (2002) developed a decision
support system in which PTFs are automatically selected to ensure a minimum vari-15

ance and return soil physical and chemical properties with their uncertainties based
on the information provided. They also provide a comprehensive review of PTFs and
related uncertainty. This uncertainty can be due to the uncertainty of the PTF model
itself and to uncertainty in the input data. The uncertainty associated with the model
can be calculated from the non-parametric bootstrap method (Efron and Tibshirani,20

1993). The uncertainty of the input data can be computed using Monte Carlo simula-
tion. This is done by sampling repeatedly from the assumed distribution of the input
data and evaluation of the output of the PTF model. Finke et al. (1996) concluded
from a study in the Netherlands that uncertainty in PTFs required adequately captur-
ing the variability of basic soil properties as well as water table depths if leaching of25

chemicals is studied. Wösten et al. (2001) evaluated accuracy and reliability of PTFs in
general and discussed statistical techniques in this respect. Typical examples for PTF
accuracy (RMSE) for water retention data were also presented. RMSE of volumetric
water content at pressure heads of –33 kPa and –1500 kPa ranged for each of those
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tensions from 0.02 (Pachepsky et al., 1996) to 0.11 m3 m−3 (Schaap et al., 1998).
Wösten et al. (2001) concluded that in general PTFs can be considered to be sufficient
accurate and reliable and may be appropiate for many applications on regional and
national scale. If PTFs are trained/calibrated adequately, the uncertainty in the model
is usually smaller than the uncertainty in the inputs. One may use Latin Hypercube5

Sampling to sample the multivariate joint distribution of the prediction. This is achieved
by sampling repeatedly from the assumed probability distribution of the input variables
and evaluating the result of the PTF for each sample. The distribution of the results,
along with the mean, standard deviation and other statistical measures can then be
estimated (Christiaens et al., 2001; McBratney et al., 2002) compared different meth-10

ods to determine soil hydraulic properties including PTF estimations through USDA soil
texture classes, continuous PTFs and neural networks in combination with bootstrap-
ping. Moreover, they analysed how this uncertainty is propagated in the distributed
hydrological MIKE SHE model using a Latin Hypercube approach. Uncertainties of soil
physical parameters in the range from 3 to 700% were found, Ksat and θr being the15

most uncertain. Neural networks performed best in terms of the total error. Schaap et
al. (1998) and Schaap and Leij (1998) present a neural network analysis for hierarchial
prediction of soil hydraulic properties. They used 12 neural network models for predic-
tion of soil water retention properties and Ksat and demonstrated that neural network
models compared favourably to regression models when tested against independent20

data. The hierarchical approach has the practical advantage that they permit high
flexibility with respect to data input. Uncertainty in predicted soil hydraulic properties
can be assessed by combining the neural network approach with the bootstrap method
and is incorporated in the ROSETTA software (Schaap et al., 2001). Carsel and Parrish
(1988) presented joint probability distributions for the parameters of the van Genuchten25

(1980) water retention and unsaturated hydraulic conductivity models (Mualem, 1976).
These parameters are: saturated volumetric water content, residual volumetric water
content, Ksat, van Genuchten model parameters α and n. Carsel and Parrish based
their analysis on data from soil samples collected by the Natural Resources Conserva-
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tion Service representing soils from 42 states in USA. Soil measurements used were
bulk density, percent sand (0.05–2 mm), and percent clay (<0.002 mm). Bulk density
was used to infer saturated water content while percent sand and clay, along with satu-
rated water content, were used with the regressions of Rawls and Brakensiek (1985) to
estimate the remaining parameters. Carsel and Parrish’s soil database included 15 7375

samples from twelve USDA soil textural classifications. Meyer et al. (1997) resampled
the distributions and derived closed-form distributions of the soil hydraulic parameters
that can be used to represent parameter uncertainty when the information about a soil
is limited to its textural class (Meyer et al., 1997). Meyer et al. (2001) listed derived
dry bulk density, compiled by Meyer and Gee (1999) from the US Natural Resources10

Conservation Service Soil Database (NRCSSC) divided according to the USDA soil
textural class. For each textural class, the Kolmogorov-Smirnov D-statistic was calcu-
lated using hypothetical normal and lognormal distributions. It appeared that a normal
distribution fitted the bulk density data best for all textural classes and is therefore rec-
ommended. As described previously, for each of the NRCSSC database soil classes,15

the statistics for the parameters θs, θr , α, n, and Ksat are computed using a multiple
regression equation (Carsel and Parrish, 1988). The Brooks and Corey parameters ψc
and λ as well as the Campbell b parameter are derived from the first mentioned. Thus
for each soil class, the probability density function, the mean, standard deviation (std),
lower limit (ll) and upper limit (ul) is provided. Meyer et al. (1997) induced correlations20

between parameters by applying the correlations between θs, θr , α, n, and Ksat given
in Carsel and Parrish (1988). The rank correlation method of Iman and Conover (1982)
as employed in the Latin Hypercube sampling code of Iman and Shortencarier (1984)
is used. These tables originally presented in Meyer et al. (1997) are well suited for
use in generation of Monte Carlo datasets where information on the probability density25

function as well as mean and variance are required.
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9 Summary and conclusions

For hydrological modelling studies at the river basin scale there is a clear need to iden-
tify, classify, and quantify uncertainties associated to soil physical and soil chemical
data in order to guide decision makers in assessing simulations of measures and their
implications for policy making. So far very little guidance has been provided on how5

to cope with uncertainty in data for input to simulation models and uncertainty in the
models themselves. In this paper uncertainty is restricted to field data, more specif-
ically soil physical data. A quantification of data uncertainty for soil physical data is
of crucial importance for the assessment of the reliability of simulated solute transport
through the unsaturated zone to vulnerable groundwater ressources at multiple scales.10

Environmental studies for hydrologic modelling are typically at the river basin scale and
therefore there is a need to know how to handle change of support for data collected
at one (usually at a far lesser) scale and the relevant river basin scale. In general for
modelling studies, non-linear soil water models can only be used at the support for
which they were developed. Estimating soil properties at unsampled points by means15

of geostatistical techniques require reliable information on the spatial structure of soil
data. In this paper this information is assessed by reviewing current developments in
the field of soil physical data uncertainty and adopting a classification system. Then
spatial variability and structure is inspected by reviewing experimental work on deter-
mining spatial length scales for soil physical (and soil chemical) data. Quantified length20

scales enable change of support, e.g. by geostatistically transforming point support
data to larger scales relevant for hydrologic modelling studies. Finally, the derivation of
hydraulic parameters from soil physical data by means of e.g. PTFs is considered and
uncertainties in this process reviewed.

It can be concluded that considering uncertainty in soil physical data in environmen-25

tal hydrologic studies at the river basin scale is not as yet widely practised. Decision-
smakers who use the results of hydrologic modelling studies to assess the effects of
various measures need guidance from modellers on how uncertainty is propagated in
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simulations and what the implications are for policymaking.
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Table 1. CV and magnitude of variability for selected properties (adapted from Mulla and
McBratney, 2000).

Soil property CV (%) Magnitude of variability

pH 2–15 Low
Porosity 7–11 Low
Bulk density 3–26 Low to moderate
% sand 3–37 Low to moderate
0.01 MPa water content 4–20 Low to moderate
Pesticide adsorption coeff. 12–31 Moderate
Soil Organic Matter (SOM) 21–41 Moderate to high
1.5 MPa water content 14–45 Moderate to high
% clay 16–53 Moderate to high
Soil Nitrate N 28–58 Moderate to high
Soil water infiltration rate 23–97 Moderate to high
Soil available potassium (K) 39–157 High
Soil available phosphorus (P) 39–157 High
Soil electrical conductivity 91–263 High
Saturated hydraulic conductivity 48–352 High
Solute dispersion coeff. 79–178 High
Solute dispersivity 78–539 High
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Table 2. Classification of uncertainty in texture related properties. For explanation of used
codes please refer to the text.

Name Abbrev. Uncertainty Type of empirical Methodological Longevity Data support
Category uncertainty quality (sample size)

Bulk density RHO C1 M1 I3, S3, O4 L2 100 cm3

Organic matter SOM D1 M1 I3, S3, O4 L2 100 cm3

content
Porosity POR C1 M1 I3, S3, O4 L2 100 cm3
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Table 3. Classification of uncertainty in derived hydraulic properties. For explanation of used
codes please refer to the text.

Name Abb. Uncertainty Type of empirical Methodological Longevity Data support
category uncertainty quality (sample size)

Saturated water content θs C1 M1 I3, S3, O4 L2 100 cm3

Residual water content θr C1 M1 I3, S3, O4 L2 100 cm3

vG fitting parameter α C1 M1 I3, S3, O4 L2 100 cm3

vG fitting parameter n C1 M1 I3, S3, O4 L2 100 cm3

B&C air entry pressure ψc C1 M1 I3, S3, O4 L2 100 cm3

B&C pore size distr. index λ C1 M1 I3, S3, O4 L2 100 cm3

Campb. fitting parameter b C1 M1 I3, S3, O4 L2 100 cm3

Saturated conductivity Ksat C1 M1 I3, S3, O4 L2 100–10 000 cm3
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Table 4. Classification of uncertainty in geochemical properties. For explanation of used codes
please refer to the text.

Name Abbrev. Uncertainty Type of empirical Methodological Longevity Data support
category uncertainty quality (sample size)

Total phosphorus TOTP C1 M1 I3,S3,O4 L2 100 cm3

Ferro oxides FE-O C1 M1 I3,S3,O4 L2 100 cm3

Aluminium oxides AL-O C1 M1 I3,S3,O4 L2 100 cm3

Phosphorus ferro oxides FE-P C1 M1 I3,S3,O4 L2 100 cm3

Phosphorus alu oxides AL-P C1 M1 I3,S3,O4 L2 100 cm3

CEC CEC C1 M1 I3,S3,O4 L2 100 cm3

CaCO3 CaCO3 C1 M1 I3,S3,O4 L2 100 cm3

PH pH C1 M1 I3,S3,O4 L2 100 cm3
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Table 5. Autocorrelation length scales (ranges) for soil physical properties.

Name Symbol γ(h) model range (m)∗ reference

Clay content % Clay Stepwise linear1,
spherical2

Exp.3

15–401, 20–332

693

1Jensen and Refs-
gaard (1989), 2Neuman
and Wierenga (2003),
3McBratney and Pringle
(1999)

Silt content % Silt Spherical2 N/A1, 20–262 1Jensen and Refsgaard
(1989), 2Neuman and
Wierenga (2003)

Sand content % Sand Stepwise linear2,
spherical3

Exp.4

1–341, 15–402, 20–
353, 754

1Mulla and McBrat-
ney (2000), 2Jensen
and Refsgaard (1989),
3Neuman and Wierenga
(2003), 4McBratney and
Pringle (1999)

Bulk density RHO, ρ none1, exp2 N/A1, 37–392 1Jensen and Refsgaard
(1989), 2Kristensen et al.
(1995)

Organic matter content SOM exp.2, sperical9 34–452, 112–2509 2Kristensen et al. (1995),
9Mulla and McBratney
(2000)

Porosity POR none1,spherical4 N/A1, 553a, 14–769a, 1Jensen and Refsgaard
(1989), 3Russo and
Bresler (1981), 9Mulla
and McBratney (2000)

Soil water characteristics1b,2c SWC Stepwise linear1,
spherical2

25–401, 375–12852 1Jensen and Refsgaard
(1989), 2Romano and
Santini (1997)

a: for saturated water content
b: water content (WC) at –10, –32, –100, –316, –1000 and –15 850 kPa; AWC (WC 100 kPa –
WC 15 850 kPa); ln(Ksat)
c: WC at –1, –10 and –100 kPa
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Table 6. Autocorrelation length scales (ranges) for derived soil hydraulic properties.

Name Symbol γ(h) model range (m)* reference

Saturated water content θs Spherical1,4 800–9001a, 552b,
14–763, 20–364

1Romano and Santini (1997),
2Russo and Bresler (1981),
3Mulla and McBratney (2000),
4Neuman and Wierenga (2003)

Residual water content θr Spherical1c 251c,2, 10–503d 1Vauclin et al. (1983), 2Russo
and Bresler (1981), 3Jensen
and Refsgaard (1989)

vG fitting parameter α N/A1, spherical2c N/A1, 252c 1Mohanty et al. (1994), 2Vauclin
et al. (1983)

vG fitting parameter n Spherical1c 251c 1Vauclin et al. (1983)
B&C air entry pressure ψc spherical1c 251c 1Vauclin et al. (1983)
B&C pore size distr. index λ N/A1e, spherical2c N/A1e, 252c 1Mohanty et al. (1994), 2Vauclin

et al. (1983)
Campb. fitting parameter b Spherical1c,2f 251c 1Vauclin et al. (1983), 2Meyer et

al. (1997)
Saturated conductivity Ksat Spherical1g 212,3, 1201g, N/A4

25–405, 1–346,
20–367, 1–258

1Cook et al. (1989), 2Russo and
Bresler (1981), 3Vauclin et al.
(1983), 4Mohanty et al. (1994),
5Jensen and Refsgaard (1989),
6Mulla and McBratney (2000),
7Neuman and Wierenga (2003),
8Sobieraj et al. (2004)

a: water content at –1 kPa
b: for saturated water content
c: water content at pF2.5
d: in general for retention parameters
e: through n=λ+1
f: relation between b and ψc and λ
g: groundwater recharge rate
*: in horizontal direction
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Table 7. Autocorrelation length scales (ranges) for geochemical properties.

Name Abbrev. γ(h) model range (m)* reference

Soil Nitrate-N NO3-N spherical/
exp2,3

40–2751

31–1202

523

1Mulla and McBratney (2000)
2Shahandeh et al. (2005)
3McBratney and Pringle (1999)

Carbon C Spherical1 501 1McBratney and Pringle (1999)
Soil available
potassium

K Spherical2 75–4281

11.42

1Mulla and McBratney (2000)
2McBratney and Pringle (1999)

Total phos-
phorus

TOTP linear/exp.2,
gaussian1,2

spherical5

631, 150–5002,
553, 68–2609

19.35

1Delcourt et al. (1996),2Kristensen et
al. (1995), 3Klironomos et al. (1999),
4Mulla and McBratney (2000)
5McBratney and Pringle (1999)

Ferro oxides FE-O Exp1 1.7 1Søvik and Aagaard (2003)
Aluminium
oxides

AL-O Exp1 0.481 1Søvik and Aagaard (2003)

Phosphorus
ferro oxides

FE-P N/A1 N/A1 1Søvik and Aagaard (2003)

Phosphorus
alu oxides

AL-P N/A1 N/A1 1Søvik and Aagaard (2003)

CEC CEC Exp1 7.51 1Barbizzi et al. (2004)
Soil pH pH Exp2 20–2601

622

1Mulla and McBratney (2000)
2McBratney and Pringle (1999)

CaCO3 CaCO3 linear/exp1 301 1Kristensen et al. (1995)

*: in horizontal direction
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